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Field Expansions in Cavities Containing
Gyrotropic Media®

J. VAN BLADELT, SENTOR MEMBER, IRE

Summary—The electric and magnetic eigenvectors for cavities
containing media with tensor characteristics are examined, and ex-
plicit formulas for the electric and magnetic fields are obtained in
terms of volume and boundary sources.

I. INTRODUCTION

"NONSIDER a cavity enclosed by a perfectly con-

ducting wall provided with an opening .S’. The
—/ cavity is excited by electric and magnetic vol-
ume currents J and 7., and through the opening in the
wall, where the tangential component of Z is given. We
address ourselves to the task of determining the interior
fields when the cavity contains an inhomogeneous ani-
sotropic medium. This problem has been solved a long
time ago for a cavity containing a homogeneous iso-
tropic medium.! We want to extend these results to our
new configuration, where, for example, the medium in-
side could typically be a ferrite in a dc magnetic field.
The successive steps are not very novel, but it was con-
sidered worthwhile to spell them out carefully for refer-
ence purposes. Our analvsis, which relies on previously
published material,?* will limit itself to media in which
the constitutive tensors € and u have the following
properties:

1) They are hermitian (i.c., e= [€]* and u=[g]*).

2) Thev yield positive-definite quadratic forms
AdA¥e-d and A*u-A7

3) They are frequency independent.

A large number of materials satisly these require-
ments over a reasonable frequency range. Examples are:

* Received by the PGMTT, May 8, 1961; revised manuscript re-
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7 This entails that the stored frequency energy has a positive
average value. Notice that ¢ and u are the relative, dimensionless con-
stitutive parameters of the medium,

a) ordinary dielectrics (homogeneous or inhomogene-
ous), b) certain plasmas and c) ferrites in weak dc mag-
netic fields, and far from gvromagnetic resonance. To
solve the expansion problem, we must introduce two
kinds of eigenvectors, electric and magnetic.

1I. ErLeEcTRIC EIGENVECTORS

The electric eigenvectors are sourceless sinusoidal
fields which can be sustained by a cavity completely
surrounded by metal. They will, consequently, satis{y
the electric conditions on the metallic boundary S:

AXE=0
div (e-E) = 0.

We want to examine the completeness properties of
these eigenvectors. Following the steps outlined in
Slater,! we will consider a linear transformation whose
operator generalizes the vector Laplacian. This operator
is

&f = grad div (e-f) — e curl(u-curl f) )

and the class of vectors f we consider are those which
have the necessary derivatives and satisfy the electric
boundary conditions. To establish completeness, we
shall follow a pattern used over and over again in simi-
lar problems. We first define a scalar product,

o= [ [ e,

This type of scalar product, with the restrictions im-
posed on ¢, satisfies the properties of the scalar product
in a Hilbert space.® With respect to that scalar product,
the transformation is self-adjoint and negative-definite,

Indeed:

1) (La, 7) = fff;[grad div (¢¥-a*) — (e )*

ccurl [(u=H*-curl #*]-e-3dV.

2

By using elementary formulas of vector analysis, this
expression can be transformed into

fff grad div (¢%-a%) -¢-0dV = ffsﬁ [div (e @%)e-
- fff,di" (e*-a*) div (e-8)dV,

8 See, e.g., B. Friediman, “Principles and Techniques of Applied
Mathematics,” John Wiley and Sons, Inc., New York, N. Y.; 1936.
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and

- [f [t el con ) oosav
-—[f f {curl [(u )% curl @] E)*} -V

-[f [ curt [Gye-curt @] v

— [ [ fycurt @) - mas

—fff curl - (u™H*- curl #*dV.
v

We have used the property that (§*=e and
(G-Q)-(®-B)=a-(@ ®)-b, where @b are vectors, and
®, ® are tensors. For the range of vectors considered in
the transformation, both surface integrals vanish, and
we find

(L4, 7) = —fffv[dive-ﬂ]*dive-ﬁdV
—fff curl - (u1)*- curl @a*dV. 3)
v

The calculation of {#, £7) proceeds along very similar
lines. It vields

(@, £3) = —fffvdiv (e-9) div (#*-¢)dV
——fff curl @*-u=1-curl 5dV. 4)
v

Expressions (3) and (4) are equal because

I

* %

@ e=¢ u*=€* i

and
curl 3- (u=1)*- curl @*
= curl #*- (g~ -curl 5 = curl #* g~ curl 7.

Thus we conclude that the transformation is self-
adjoint.

2) (L4, #) can be found from (3) and (4) to be

(L, 7) = —fffldivmzlﬂdv
v
—fff curl *-u=1-curl 4dV.
Vv

This form is always negative for # nonzero. Setting
(L4, &) equal to zero yields

diV 6']70 =0
curl fo = 0,

January

where f, is perpendicular to the boundary. Clearly, Fois
the electrostatic field which arises when the boundaries
are metallized and set at a constant potential, and the
medium inside the cavity has a (complex) dielectric
constant €, and contains no charges. This field is zero
when the volume is singly-bounded. The proof of this
statement is as follows. First notice that f; is irrota-
tional, and can be written as grad ¢y, where

div [e-grad ¢o] = 0
¢o=10 onS.

Applyving the divergence theorem, we obtain

f f fvdiv [¢0*e- grad golaV
- f f S¢”*[f'grad o] #,dS = 0
B f f f ¢0* div [e-grad goJV
* f f fV grad ¢*-e-grad ¢odV. (5)

The positive definite character of the last integral im-
plies that fo=grad ¢,=0 everywhere. The proof breaks
down for a doubly-bounded region, which admits a
nonzero solution fo. We conclude that our transforma-
tion is negative-definite in a singly-bounded wvolume,
but that it will keep this character in a doubly-bounded
volume only if we restrict our range to those vectors f
which do not “contain” any part of fy, i.e., have zero
projection on the fo in the sense that ‘

fffvj*-e.jfodv: 0.

With these restrictions, we find that the transforma-
tion, being self-adjoint and negative-definite, has all
the desirable properties of such transformations. In par-
ticular, the eigenvectors

grad div (e* %) — e t-curl (u=t-curl %) + kB, = 0 (6)

form a closed and complete set. They are orthogonal,
1.e., the normalized eigenvectors satis{y

ffquzm*-eandv= 0, @

where 4, and 4, correspond to different eigenvalues
k.t and k.2 The eigenvalues £,% are real and positive, a
fact of great physical significance in terms of resonant
frequencies. The eigenvectors belong to two classes:

a) Irrotational eigenvectors 7, =grad ¢, where

div (e grad ¢n) + pntm = 0 ¢n =0 o0n S. (8
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The functions ¢,, are orthogonal in the sense that

fffrdm*%dV = Gnn. (9

When the region is doubly-bounded, one should
not forget to include the eigenvector 7, (with
eigenvalue zero) in the set of f,’s.

b) The eigenvectors of the transformation

—e locurl [,u‘l-curl é,,,] + v, =0
7 X &y, =0 on .S. (10)
It is an easy matter to check that these eigenvec-

tors are orthogonal among themselves, and to the
irrotational vectors fy.

A complex-square intergrable vector @ can be expanded
in the f,, and the é,, and the expansion formula takes the
form
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connected region modifications are caused by the exist
ence of a magnetostatic field gy satisfying

I

0
0

div (u-Z0)

It

curl g,

u-Zo tangent to .S,

the modifications being similar to those introduced by
the existence of fo.
2) That the eigenvectors

grad div (u-9,.) — pt-curl (et curl 3,) + Enlin = 0 (14)

form a closed and complete set, are orthogonal in the
sense that the normalized eigenvectors satisfy

fff ﬁm*'u"z_)ndv = 57”"7
v

(15)

,um2 fff ¢‘m*¢‘de "
14

Clearly the &, form a complete set for the restricted
class of vectors for which div(e-@) =0, and the 7, form
a complete set for the class of irrotational vectors per-
pendicular to the boundary. The applicatioa of this ex-
pansion formula to electric fields will be taken up in
Section IV.

III. MagNETIC EIGENVECTORS
The boundary conditions satisfied by the magnetic
field at a perfectly conducting wall are of the magnetic
type
A u-H] =0
X [et-curl ] = 0.

They express that the induction B is tangent to the
walls, and the electric field E is perpendicular to the lat-
ter. This suggests the kind of linear transformation we
should consider. The suitable scalar product is

(i, 17>=ffj;zl*-u°77dV.

We follow the steps outlined in Section I, and assert:
1) That the linear transformation

(12)

Mf = grad div (u-f) — ' curl (1 curl f), (13)
where u -f is tangent to the boundary and e'-curl f is
perpendicular to the boundary, is self-adjoint and nega-
tive-definite in a simply-connected region. In a doubly-

—fff én* div (e-a@)dV fff curl &,% -yt curl ddV'+ff curl 2,.* - =t (@ X m)dS
- + 2 @n " s .

(11)

szfff En* e EndV
v

and belong to two classes:

a) Irrotational eigenvectors g,=grad v, where
div [u-grad ¥,] + An2m = 0
Aip-grad ¥, = 0 on S. (16)

The ., are orthogonal in the sense of (9), and the
Zn in the sense of (15).
b) The eigenvectors of the transformation

—ut-curl (et-curl ) + vn2lm = 0
7 X (et-curl k) = 0 on S. an

A few simple steps show that the eigenvalues in
(10) and (17) are identical, and that the follow-
ing connection exists between eigenvectors:

by = — pt-curl 2,
Vm

ey, = — e t-curl /iy,
Ym

f f f T - Tend V
v

1
- . fff Cuﬂ Em*-,u,“l'curl éde
Y~ v
fff ém*'e'émdv

-

1 _ _
- fff curl % e - curl b dV .
V™ v

i

(18)
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Fig. 1—Cavity filled with anisotropic medium.

3) That a complex square integrable vector admits
the expansion

ffx//mn,uadS—fffxﬁm div (u- @)V
e

fff curl fi* et curl adv
I7
" Vi fffh - hndV

R N

St
1|

(19)

Clearly, the g, form a complete set for irrotational vec-
tors, and the %, for vectors d such that u-d is tangent
to the boundary and div(u-a@) =0.

IV. ArpLicATION TO CAVITY FIELDS

Consider a cavity (Fig. 1) excited through a hole S
(in which #X E is given) and by electric and magnetic
currents J and 7. If we expand E, -7 and e'-curl &7
in terms of electric eigenvectors, H, u=*- 7, and u*-curl
E in terms of magnetic eigenvectors, and insert the ex-
pansions in Maxwell's equations

wtcurl E = — jopcH — utTn
el-curl H = jweoE +- 6—1'7,

we find, after a few steps similar to those used for
evacuated cavities,

[[ [ eaar
V

+ jouo

ff En* e 8,dV
-

E =
]wéo m
e
] [ [ rraav + [ [ hr-o x Bas
Em v S
B2 — v " _ i
ffflzm*~y~]zde
v
H =

jwﬂo m

e
/Em ( fff ol TV

[ foar

f fszzm*-m X E)ds

ff h* e ndV

— Vn
[[ [ eat-cuar
\4

+ jweo (20)

ff T ndV
14
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These formulas are quite similar to those obtained for
evacuated cavities, and most of the comments made
about the latter can be duplicated here, for example,
that the electric currents should be parallel to the lines
of the electric field to efficiently excite any given mode.
We do not insist on this aspect, but notice that the
formulas of (20) provide a purely formal solution of our
problem. There remains the formidable task of actually
determining the eigenvectors for any given geometry
and disposition of gyrotropic material (in certain cases
one might be satisfied with the structure of a single mode
if operation at a resonant frequency is considered). This
problem is not within the province of the present paper,
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and we shall only mention that cylindrical structures in
the form of terminated waveguides are those for which
the analysis can progress most satisfactorily.®12
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An Impedance Transformation Method for Finding
the Load Impedance of a Two-Port Network®

R. MITTRAY, MeEMBER, 1RE, AND R. J. KING], MEMBER, IRE

Summary-—An unknown load impedance terminating a lossy two-
port junction can be calculated if the input impedance and junction
parameters are known. It is to be shown that there exists a linear
relationship, dependent upon two calibration constants, between the
input reflection coefficient and a modified reflection coefficient of
the load. Applying the linear transformation to the junction input
impedance permits evaluation of the unknown load impedance. Cali~
bration is accomplished by terminating the transmission line in at
least three different reactances and measuring the corresponding
input reflection coefficients. These data plot into the usual circular
configuration on a Smith chart from which the necessary calibration
data is obtained. When several load reactances are used, the calibra-
tion accuracy can be considerably increased, since the averaging ad-
vantage of plotting a mean straight line is utilized. Furthermore,
once the junction has been calibrated, its equivalent T-network im-
pedances and scattering coefficients may be found.

I. INTRODUCTION

N UNKNOWN load impedance which terminates a
l two-port junction can be calculated if the input
impedance and parameters of the junction are

* Received by the PGMTT, January 25, 1961; revised manuscript
received, August 21, 1961. The research reported in this paper was
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known. Several methods are currently available for de-
termining the network paraineters, such as the three-
point method, canonical method, and the scattering-
matrix method.'—1¢
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